Problem set 5

Due date: 11th March

(Submit any five)

Exercise 45. Let Z_1, \ldots, Z_n be i.i.d N(0, 1) and write \mathbb{Z} for the vector with components Z_1, \ldots, Z_n . Let A be an $m \times n$ matrix and let μ be a vector in \mathbb{R}^m . Then the *m*-dimensional random vector $\mathbb{X} = \mu + A\mathbb{Z}$ is said to have distribution $N_m(\mu, \Sigma)$ where $\Sigma = AA^t$ ('Normal distribution with mean vector μ and covariance matrix Σ ').

- (1) If $m \le n$ and A has rank m, show that X has density $(2\pi)^{-\frac{m}{2}} \exp\{-\frac{1}{2}\mathbf{x}^t A^{-1}\mathbf{x}\}$ w.r.t Lebesgue measure on \mathbb{R}^m . In particular, note that the distribution depends only on μ and AA^t . (Note: If m > n or if rank(A) < m, then satisfy yourself that X has no density w.r.t Lebesgue measure on \mathbb{R}^m - you do not need to submit this).
- (2) Check that $\mathbf{E}[X_i] = \mu_i$ and $\operatorname{Cov}(X_i, X_j) = \Sigma_{i,j}$.
- (3) What is the distribution of (i) (X_1, \ldots, X_k) , for $k \le n$? (ii) $B\mathbf{X}$, where B is a $p \times m$ matrix? (iii) $X_1 + \ldots + X_m$?

Exercise 46. (1) If *X*, *Y* are independent random variables, show that Cov(X, Y) = 0.

- (2) Give a counterexample to the converse by giving an infinite sequence of random variables X_1, X_2, \ldots such that $Cov(X_i, X_j) = 0$ for any $i \neq j$ but such that X_i are not independent.
- (3) Suppose (X_1, \ldots, X_m) has (joint) normal distribution (see the first question). If $\text{Cov}(X_i, X_j) = 0$ for all $i \le k$ and for all $j \ge k + 1$, then show that (X_1, \ldots, X_k) is independent of (X_{k+1}, \ldots, X_m) .

Exercise 47. Suppose (X_1, \ldots, X_n) has density f (w.r.t Lebesgue measure on \mathbb{R}^2).

- (1) If $f(x_1,...,x_n)$ can be written as $\prod_{k=1}^n g_k(x_k)$ for some one-variable functions $g_1,...,g_n$. Then show that $X_1,...,X_n$ are independent. (Don't assume that g_k is a density!)
- (2) If X_1, \ldots, X_n are independent, then $f(x_1, \ldots, x_n)$ can be written as $\prod_{k=1}^n g_k(x_k)$ for some one-variable densities g_1, \ldots, g_n .

Exercise 48. Among all *n*! permutations of [*n*], pick one at random with uniform probability. Show that the probability that this random permutation has no fixed points is at most $\frac{1}{2}$ for any *n*.

Exercise 49. Suppose each of $r = \lambda n$ balls are put into *n* boxes at random (more than one ball can go into a box). If N_n denotes the number of empty boxes, show that for any $\delta > 0$, as $n \to \infty$,

$$\mathbf{P}\left(\left|\frac{N_n}{n}-e^{-\lambda}\right|>\delta\right)\to 0$$

Exercise 50. Let X_n be i.i.d random variables such that $\mathbf{E}[|X_1|] < \infty$. Define the random power series $f(z) = \sum_{k=0}^{\infty} X_n z^n$. Show that almost surely, the radius of convergence of f is equal to 1. [Note: Recall from Analysis class that the radius of convergence of a power series $\sum c_n z^n$ is given by $(\limsup |c_n|^{\frac{1}{n}})^{-1}$].

- **Exercise 51.** (1) Let *X* be a real values random variable with finite variance. Show that $f(a) := \mathbf{E}[(X a)^2]$ is minimized at $a = \mathbf{E}[X]$.
 - (2) What is the quantity that minimizes $g(a) = \mathbf{E}[|X a|]$? [Hint: First consider X that takes finitely many values with equal probability each].