Problem set 5

Due date: 11th March
(Submit any five)

Exercise 45. Let Z_{1}, \ldots, Z_{n} be i.i.d $N(0,1)$ and write \mathbf{Z} for the vector with components Z_{1}, \ldots, Z_{n}. Let A be an $m \times n$ matrix and let μ be a vector in \mathbb{R}^{m}. Then the m-dimensional random vector $\mathbf{X}=\mu+A \mathbf{Z}$ is said to have distribution $N_{m}(\mu, \Sigma)$ where $\Sigma=A A^{t}$ ('Normal distribution with mean vector μ and covariance matrix Σ ').
(1) If $m \leq n$ and A has rank m, show that \mathbf{X} has density $(2 \pi)^{-\frac{m}{2}} \exp \left\{-\frac{1}{2} \mathbf{x}^{t} A^{-1} \mathbf{x}\right\}$ w.r.t Lebesgue measure on \mathbb{R}^{m}. In particular, note that the distribution depends only on μ and $A A^{t}$. (Note: If $m>n$ or if $\operatorname{rank}(A)<m$, then satisfy yourself that \mathbf{X} has no density w.r.t Lebesgue measure on \mathbb{R}^{m} - you do not need to submit this).
(2) Check that $\mathbf{E}\left[X_{i}\right]=\mu_{i}$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\Sigma_{i, j}$.
(3) What is the distribution of (i) (X_{1}, \ldots, X_{k}), for $k \leq n$? (ii) $B \mathbf{X}$, where B is a $p \times m$ matrix? (iii) $X_{1}+\ldots+X_{m}$?

Exercise 46. (1) If X, Y are independent random variables, show that $\operatorname{Cov}(X, Y)=0$.
(2) Give a counterexample to the converse by giving an infinite sequence of random variables X_{1}, X_{2}, \ldots such that $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for any $i \neq j$ but such that X_{i} are not independent.
(3) Suppose $\left(X_{1}, \ldots, X_{m}\right)$ has (joint) normal distribution (see the first question). If $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for all $i \leq k$ and for all $j \geq k+1$, then show that $\left(X_{1}, \ldots, X_{k}\right)$ is independent of $\left(X_{k+1}, \ldots, X_{m}\right)$.

Exercise 47. Suppose $\left(X_{1}, \ldots, X_{n}\right)$ has density f (w.r.t Lebesgue measure on \mathbb{R}^{2}).
(1) If $f\left(x_{1}, \ldots, x_{n}\right)$ can be written as $\prod_{k=1}^{n} g_{k}\left(x_{k}\right)$ for some one-variable functions g_{1}, \ldots, g_{n}. Then show that X_{1}, \ldots, X_{n} are independent. (Don't assume that g_{k} is a density!)
(2) If X_{1}, \ldots, X_{n} are independent, then $f\left(x_{1}, \ldots, x_{n}\right)$ can be written as $\prod_{k=1}^{n} g_{k}\left(x_{k}\right)$ for some one-variable densities g_{1}, \ldots, g_{n}.
Exercise 48. Among all n ! permutations of $[n]$, pick one at random with uniform probability. Show that the probability that this random permutation has no fixed points is at most $\frac{1}{2}$ for any n.
Exercise 49. Suppose each of $r=\lambda n$ balls are put into n boxes at random (more than one ball can go into a box). If N_{n} denotes the number of empty boxes, show that for any $\delta>0$, as $n \rightarrow \infty$,

$$
\mathbf{P}\left(\left|\frac{N_{n}}{n}-e^{-\lambda}\right|>\delta\right) \rightarrow 0
$$

Exercise 50. Let X_{n} be i.i.d random variables such that $\mathbf{E}\left[\left|X_{1}\right|\right]<\infty$. Define the random power series $f(z)=$ $\sum_{k=0}^{\infty} X_{n} z^{n}$. Show that almost surely, the radius of convergence of f is equal to 1. [Note: Recall from Analysis class that the radius of convergence of a power series $\sum c_{n} z^{n}$ is given by $\left.\left(\limsup \left|c_{n}\right|^{\frac{1}{n}}\right)^{-1}\right]$.
Exercise 51. (1) Let X be a real values random variable with finite variance. Show that $f(a):=\mathbf{E}\left[(X-a)^{2}\right]$ is minimized at $a=\mathbf{E}[X]$.
(2) What is the quantity that minimizes $g(a)=\mathbf{E}[|X-a|]$? [Hint: First consider X that takes finitely many values with equal probability each].

